
~ 18 ~

International Journal of Circuit, Computing and Networking 2024; 5(1): 18-23

E-ISSN: 2707-5931

P-ISSN: 2707-5923

IJCCN 2024; 5(1): 18-23

http://www.computersciencejo

urnals.com/ijccn

Received: 13-11-2023

Accepted: 19-12-2023

Qing Zhou

Faculty of Information

Technology, Beijing

University of Technology,

Beijing 100124, China

Sheng-Hua Tan

Faculty of Information

Technology, Beijing

University of Technology,

Beijing 100124, China

Corresponding Author:

Qing Zhou

Faculty of Information

Technology, Beijing

University of Technology,

Beijing 100124, China

Latency reduction techniques in SDN-based wide area

networks

Qing Zhou and Sheng-Hua Tan

DOI: https://doi.org/10.33545/27075923.2024.v5.i1a.62

Abstract
Software-Defined Networking (SDN) has revolutionized the management and operation of Wide Area

Networks (WANs) by introducing centralized control and programmability. Despite these

advancements, latency remains a critical issue, impacting the performance and efficiency of SDN-

based WANs. This research article explores various techniques for reducing latency in SDN-based

WANs, including intelligent traffic engineering, edge computing integration, advanced routing

algorithms, and data plane optimization. The study provides a comprehensive analysis of these

techniques, their implementation, and their impact on network performance.

Keywords: Software-defined networking (SDN), wide area networks (WANs), traffic engineering

Introduction

In the ever-evolving landscape of networking, Software-Defined Networking (SDN) has

emerged as a paradigm shift, offering unprecedented levels of flexibility, programmability,

and centralized control. SDN decouples the control plane from the data plane, enabling

network administrators to dynamically manage network behavior through software

applications. This decoupling facilitates efficient resource management, network automation,

and rapid deployment of new services. However, despite these advantages, latency remains a

critical performance challenge in SDN-based Wide Area Networks (WANs).

Latency, the time taken for a data packet to travel from its source to its destination, is a

crucial metric affecting the overall performance and user experience in networks. High

latency can degrade the quality of service (QoS), particularly for latency-sensitive

applications such as video conferencing, online gaming, and real-time data analytics. In

SDN-based WANs, latency issues can arise from several factors, including network

congestion, inefficient routing, delays in controller responses, and packet processing

overheads.

Network congestion is a primary factor contributing to latency, as high traffic volumes can

lead to delays and increased latency. Efficient traffic management and congestion control

mechanisms are essential to mitigate these effects. Suboptimal routing, resulting from the

inadequacy of traditional routing protocols to handle the dynamic nature of SDN

environments, can lead to longer travel times for data packets, thereby increasing latency.

Controller processing delays also significantly impact latency, as the centralized nature of

SDN relies heavily on the controller's ability to make rapid decisions and updates. Any

delays in the controller's processing can directly affect network latency. Additionally, data

plane processing overheads play a crucial role in latency. The efficiency of the data plane,

responsible for forwarding packets based on the control plane's rules, is vital, and inefficient

packet processing can lead to significant delays.

To address these latency challenges, various techniques have been proposed and explored.

Intelligent traffic engineering techniques, such as Multi-Protocol Label Switching (MPLS)

and Segment Routing (SR), dynamically adjust traffic paths and balance the load across the

network, thereby reducing congestion and latency. Integrating edge computing with SDN

brings computational resources closer to the data source, reducing the distance that data

needs to travel and consequently lowering latency, which is particularly beneficial for real-

time and IoT applications.

http://www.computersciencejournals.com/ijccn
http://www.computersciencejournals.com/ijccn
https://doi.org/10.33545/27075923.2024.v5.i1a.62

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 19 ~

Advanced routing algorithms, such as Dijkstra's algorithm

for shortest path computation and Ant Colony Optimization

(ACO) for adaptive routing, can enhance routing efficiency

and reduce latency by finding optimal paths for data

transmission. Optimizing the data plane involves using

high-performance switching hardware and efficient packet

processing techniques. Technologies like Network Function

Virtualization (NFV) can offload certain functions from the

data plane, allowing for faster packet processing and

reduced latency. Furthermore, the placement of SDN

controllers within the WAN is critical for minimizing

latency. Optimal controller placement strategies aim to

reduce the distance between controllers and network

devices, ensuring quicker response times for control plane

operations.

This study aims to implement and evaluate these latency

reduction techniques through a combination of simulations

and real-world deployments, providing a comprehensive

analysis of their effectiveness in reducing latency. By

identifying and addressing the primary sources of latency,

this research seeks to enhance the performance of SDN-

based WANs, making them more suitable for modern,

latency-sensitive applications. The findings will offer

practical recommendations for network administrators and

engineers on the best practices and strategies for minimizing

latency in SDN-based WANs.

Main Objective of Study

The main objective of this study is to investigate and

evaluate effective techniques for reducing latency in

Software-Defined Networking (SDN)-based Wide Area

Networks (WANs) to enhance network performance and

support the demands of modern applications.

Review of Literature

SDN has emerged as a transformative approach to

networking by decoupling the control plane from the data

plane, enabling centralized network management and

programmability. A comprehensive survey by Kreutz et al.

(2015) [1] highlights the potential of SDN to revolutionize

network management, particularly in WAN environments

where flexibility and scalability are critical.

Latency, a critical performance metric in networking, has

been extensively studied in the context of SDN. Hu et al.

(2014) [3] discuss the various sources of latency in SDN,

including controller placement, packet processing delays,

and network congestion. The study emphasizes the need for

optimized control plane operations to mitigate latency

issues.

Traffic engineering (TE) is a crucial aspect of network

management aimed at optimizing the flow of data to avoid

congestion and reduce latency. Akyildiz et al. (2014) [2]

provide a detailed roadmap for implementing TE in SDN,

highlighting techniques such as MPLS and Segment

Routing (SR) that can dynamically adjust traffic paths based

on real-time network conditions.

Edge computing, which brings computational resources

closer to the data source, has been identified as an effective

means to reduce latency. Satyanarayanan (2017) [4] explores

the emergence of edge computing and its synergy with

SDN, showing that processing data at the edge nodes can

significantly lower latency, particularly for real-time

applications and IoT devices.

The implementation of advanced routing algorithms in SDN

controllers has shown promise in reducing latency by

optimizing routing paths. Research by Jian et al. (2017) [5]

examines the use of algorithms like Dijkstra’s and Ant

Colony Optimization (ACO) in SDN environments,

demonstrating their effectiveness in finding shortest and

most efficient paths for data transmission.

Optimizing the data plane is essential for reducing latency in

SDN-based networks. Techniques such as Network

Function Virtualization (NFV) can offload specific

functions from the data plane, allowing for faster packet

processing. Studies have shown that leveraging high-

performance switching hardware and efficient packet

processing techniques can enhance data plane performance

and reduce latency.

The placement of SDN controllers significantly impacts

network latency. Various strategies have been proposed to

determine optimal controller placement, balancing the trade-

offs between latency and other performance metrics. Hu et

al. (2014) [3] discuss clustering and hierarchical controller

architectures as effective approaches to minimize the

distance between controllers and network devices, thereby

reducing latency.

Techniques for Latency Reduction

Intelligent Traffic Engineering

Intelligent traffic engineering is a crucial technique for

optimizing the performance of SDN-based Wide Area

Networks (WANs). By dynamically managing data flows,

intelligent traffic engineering aims to minimize congestion,

optimize resource utilization, and ultimately reduce latency.

This detailed analysis covers the principles, methods, and

benefits of intelligent traffic engineering in SDN-based

WANs. Traffic engineering involves the optimization of

data transmission paths and network resource allocation to

ensure efficient and reliable data delivery. The primary

goals are to maximize network throughput, minimize

latency, balance network load, and enhance fault tolerance.

In SDN-based WANs, intelligent traffic engineering

leverages the programmability and centralized control

offered by SDN to achieve these goals. Multi-Protocol

Label Switching (MPLS) is a widely used technique in

intelligent traffic engineering. MPLS directs data from one

network node to the next based on short path labels rather

than long network addresses, reducing the complexity of

lookups and speeding up traffic flow. In an MPLS-enabled

network, data packets are assigned labels that determine

their paths through the network. This label-based

forwarding reduces the processing burden on routers,

leading to lower latency and higher throughput. Segment

Routing (SR) is another method that can be used to

implement intelligent traffic engineering. SR simplifies the

routing process by encoding the path that a packet should

take within the packet header itself. This eliminates the need

for complex state maintenance at each router along the path.

By pre-determining the paths for data flows, SR can

effectively manage network resources and ensure efficient

data delivery. Traffic engineering algorithms play a vital

role in optimizing data paths and managing network

resources. Algorithms like Dijkstra’s and Ant Colony

Optimization (ACO) are used to find the shortest and most

efficient paths through the network. Dijkstra’s algorithm

calculates the shortest path from a source node to all other

nodes, ensuring efficient routing of data packets. ACO,

inspired by the foraging behavior of ants, adapts to changing

http://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 20 ~

network conditions and dynamically finds optimal paths for

data transmission. Real-time traffic monitoring and dynamic

path adjustment are essential components of intelligent

traffic engineering. SDN controllers continuously monitor

network conditions, such as traffic load and link utilization.

Based on this real-time data, the controllers can dynamically

adjust traffic paths to avoid congestion and ensure efficient

data flow. This proactive approach helps in maintaining

optimal network performance and reducing latency. Load

balancing is another critical aspect of intelligent traffic

engineering. By distributing traffic evenly across the

network, load balancing prevents bottlenecks and ensures

that no single link or node becomes a point of congestion.

Techniques like Equal-Cost Multi-Path (ECMP) routing are

used to achieve load balancing. ECMP allows multiple paths

to be used for data transmission, spreading the traffic load

and improving network resilience. Intelligent traffic

engineering also enhances fault tolerance and network

reliability. By dynamically rerouting traffic in response to

link or node failures, SDN controllers ensure continuous

data delivery and minimize service disruptions. Fast reroute

mechanisms, such as MPLS Fast Reroute (FRR), provide

pre-computed backup paths that can be quickly activated in

case of failures, further reducing downtime and maintaining

network performance.

Edge Computing Integration

Edge computing significantly enhances network

performance by processing data closer to its source, which

minimizes the distance data needs to travel. This approach is

especially beneficial for latency-sensitive applications such

as IoT devices, real-time analytics, and autonomous

systems. By reducing the round-trip time for data

transmission, edge computing lowers latency and alleviates

the computational load on central servers.

In an SDN-based WAN, integrating edge computing allows

for a more dynamic and efficient management of network

resources. Edge nodes, which are smaller data centers or

devices with computational capabilities, are strategically

placed closer to the data sources. This proximity enables

faster data processing, as data no longer needs to traverse

long distances to reach a centralized server. Instead, it is

processed locally, and only the results or necessary data are

sent to the central server if needed. The integration of edge

computing and SDN is facilitated by the programmability

and centralized control of SDN. SDN controllers can

dynamically manage and orchestrate the deployment of

applications and services across both central and edge

nodes. This ensures that computational tasks are distributed

efficiently, based on current network conditions and

workload requirements. For instance, during periods of high

demand, an SDN controller can offload tasks from the

central server to nearby edge nodes to balance the load and

prevent bottlenecks. Furthermore, edge computing enhances

the scalability of the network. As the number of connected

devices grows, processing all data centrally becomes

impractical due to the sheer volume and latency involved.

Edge computing mitigates this issue by distributing the

processing workload, allowing the network to scale more

effectively. This distributed architecture also improves fault

tolerance, as the failure of a single edge node does not

cripple the entire network; other edge nodes can take over

the processing tasks. Security is another area where edge

computing integration proves advantageous. By processing

data locally, sensitive information can be handled at the

source, reducing the risk of exposure during transmission.

Additionally, edge nodes can implement localized security

policies and protocols, enhancing overall network security.

However, integrating edge computing with SDN also

presents challenges. One of the primary concerns is the

complexity of managing a distributed network with

numerous edge nodes. Ensuring consistency and coherence

in data processing across these nodes requires sophisticated

orchestration and management tools. Additionally, there

may be increased operational costs associated with

maintaining multiple edge nodes compared to a centralized

data center. Overall, edge computing integration in SDN-

based WANs offers significant benefits in terms of latency

reduction, load balancing, scalability, and security. By

enabling local data processing, it enhances network

efficiency and performance, making it a vital component for

modern, latency-sensitive applications. The dynamic

capabilities of SDN further optimize the utilization of edge

computing resources, ensuring a responsive and resilient

network infrastructure.

Advanced Routing Algorithms

By determining the most efficient paths for data packets to

travel through the network, these algorithms help to

minimize latency, enhance throughput, and improve overall

network efficiency. This detailed analysis explores the

principles, benefits, and challenges associated with

advanced routing algorithms in SDN-based WANs.

Advanced routing algorithms are designed to address the

limitations of traditional routing protocols, which may not

be well-suited for the dynamic and programmable nature of

SDN environments. Traditional routing protocols often rely

on static paths and can struggle to adapt to changing

network conditions, leading to suboptimal performance. In

contrast, advanced routing algorithms leverage the

centralized control and real-time data provided by SDN

controllers to make more informed and dynamic routing

decisions. One of the most well-known advanced routing

algorithms is Dijkstra's algorithm, which calculates the

shortest path between nodes in a network. This algorithm

uses a graph-based approach, where nodes represent routers

and edges represent the links between them, each with an

associated cost (e.g., latency, bandwidth). By iteratively

exploring the shortest paths from a source node to all other

nodes, Dijkstra's algorithm ensures that data packets take

the most efficient route, minimizing travel time and

reducing latency. Another prominent advanced routing

algorithm is Ant Colony Optimization (ACO), inspired by

the foraging behavior of ants. In ACO, artificial "ants"

explore the network and leave pheromone trails on the paths

they take. These trails guide subsequent ants, with stronger

pheromone trails indicating more optimal paths. Over time,

the algorithm converges on the most efficient routes as more

ants follow the strongest trails. ACO is particularly effective

in dynamic environments, as it can adapt to changes in

network conditions and traffic patterns, continually refining

the routing paths. Advanced routing algorithms also benefit

from the ability to use multiple metrics to determine the best

paths. While traditional routing protocols might prioritize a

single metric, such as shortest path, advanced algorithms

can consider multiple factors simultaneously, including

latency, bandwidth, link reliability, and congestion. This

multi-metric approach allows for more nuanced and

http://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 21 ~

effective routing decisions, tailored to the specific

requirements of different types of traffic. The integration of

machine learning and artificial intelligence into routing

algorithms is another area of advancement. Machine

learning-based routing algorithms can analyze historical and

real-time network data to predict traffic patterns and

optimize routes accordingly. These algorithms can learn

from past network behavior, identifying trends and making

proactive adjustments to routing paths to avoid congestion

and minimize latency.

Advanced routing algorithms also present certain

challenges. One of the primary challenges is computational

complexity. Algorithms like Dijkstra's and ACO can be

resource-intensive, particularly in large-scale networks with

many nodes and links. This complexity can lead to

increased processing times, potentially offsetting some of

the latency reduction benefits. To mitigate this, hybrid

approaches that combine different algorithms or use

heuristic methods are often employed, balancing accuracy

and computational efficiency.

Another challenge is the need for accurate and timely

network data. Advanced routing algorithms rely on real-

time information about network conditions to make optimal

decisions. Inaccuracies or delays in this data can lead to

suboptimal routing choices, affecting network performance.

Ensuring reliable and fast data collection and dissemination

within the network is therefore critical for the effective

implementation of advanced routing algorithms

Model: Dijkstra's Algorithm for Shortest Path

Dijkstra's algorithm calculates the shortest path from a

source node to all other nodes in the network, ensuring

efficient routing of data packets.

Fig 1: Dijkstra's algorithm finds the shortest path, optimizing

routing and reducing latency.

4. Data Plane Optimization

Data plane optimization is essential for improving the

performance and efficiency of SDN-based Wide Area

Networks (WANs). The data plane is responsible for the

actual forwarding of packets based on the rules set by the

control plane. Optimizing the data plane involves enhancing

the hardware and software components that handle packet

processing to reduce delays, increase throughput, and

minimize latency.

In an SDN-based WAN, data plane optimization can be

achieved through several strategies. One key approach is the

use of high-performance switching hardware, such as

specialized network processors and field-programmable gate

arrays (FPGAs), which can process packets at very high

speeds. These hardware solutions are designed to handle

large volumes of traffic with minimal delay, ensuring that

packets are forwarded quickly and efficiently.

Another important aspect of data plane optimization is the

implementation of efficient packet processing techniques.

This includes optimizing the algorithms used for tasks such

as packet classification, scheduling, and queuing. By

streamlining these processes, the data plane can handle

packets more quickly and with fewer resources, leading to

lower latency and higher throughput.

Network Function Virtualization (NFV) also plays a

significant role in data plane optimization. NFV allows

network functions such as firewalls, load balancers, and

intrusion detection systems to be virtualized and run on

commodity hardware. This flexibility enables the dynamic

allocation of resources to different network functions based

on current traffic demands, improving overall network

efficiency. By offloading certain functions from dedicated

hardware to virtualized environments, NFV can reduce the

processing burden on physical devices and enhance the

scalability of the network.

Load balancing is another critical component of data plane

optimization. By distributing traffic evenly across multiple

paths or devices, load balancing prevents any single

component from becoming a bottleneck. This not only

improves performance but also enhances the reliability and

fault tolerance of the network. Advanced load balancing

algorithms can dynamically adjust traffic distribution based

on real-time network conditions, ensuring optimal

utilization of network resources.

Security considerations are also integral to data plane

optimization. Implementing robust security measures such

as encryption and access control within the data plane can

protect against threats without significantly impacting

performance. By integrating security functions directly into

the data plane, networks can maintain high levels of

protection while minimizing the overhead associated with

external security appliances.

Monitoring and analytics are essential for continuous data

plane optimization. By collecting and analyzing

performance data, network administrators can identify

bottlenecks and inefficiencies in the data plane. This

information can then be used to make targeted

improvements, such as adjusting packet processing

algorithms or reallocating resources. Real-time monitoring

tools provide visibility into the performance of the data

plane, enabling proactive management and rapid response to

issues.

5. Optimal Controller Placement

Optimal controller placement is a critical aspect of the

design and operation of SDN-based Wide Area Networks

(WANs). The placement of controllers significantly impacts

network performance, particularly in terms of latency, fault

tolerance, and scalability. Controllers in an SDN

architecture manage the flow of data across the network by

making decisions about packet routing and handling.

Ensuring these controllers are strategically placed can

optimize network efficiency and responsiveness.

In an SDN-based WAN, controllers must be positioned to

minimize the latency between the control plane and the data

plane. Latency in this context refers to the time taken for

http://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 22 ~

control messages to travel between the controllers and the

network devices (switches and routers) they manage. Lower

latency results in faster decision-making and more

responsive network operations. Therefore, placing

controllers closer to the network devices they manage can

significantly reduce this latency.

Fault tolerance is another crucial consideration in controller

placement. A well-designed SDN architecture should be

resilient to controller failures. This involves distributing

controllers across the network in a manner that ensures

redundancy and reliability. If one controller fails, another

should be able to take over its responsibilities without

causing significant disruptions to network operations. This

often requires a balance between centralization and

decentralization: enough centralization to manage the

network effectively, but sufficient decentralization to

provide redundancy and fault tolerance.

Scalability is also a key factor. As the network grows, the

controller infrastructure must scale to handle increased

traffic and more complex routing decisions. Placing

controllers in a way that can accommodate network

expansion without significant reconfiguration is essential.

This involves planning for future growth and ensuring that

new controllers can be added without disrupting existing

operations.

The network topology plays a significant role in

determining optimal controller placement. Different

topologies, such as hierarchical, mesh, or ring, have unique

characteristics that influence where controllers should be

placed. For instance, in a hierarchical topology, placing

controllers at higher levels of the hierarchy can provide a

broad overview and control over multiple subnetworks,

while in a mesh topology, more evenly distributed

controllers might be necessary to manage the complex

interconnections.

Algorithms and mathematical models are often used to

determine the optimal placement of controllers. These

models consider various factors such as latency, load

balancing, fault tolerance, and network topology. Heuristic

methods and optimization techniques, such as linear

programming, genetic algorithms, and clustering algorithms,

are commonly employed to find the best controller

placement strategy.

Load balancing between controllers is another important

aspect. Even if controllers are optimally placed

geographically, uneven distribution of network traffic can

lead to some controllers being overloaded while others are

underutilized. Dynamic load balancing techniques can be

implemented to distribute traffic evenly across controllers,

ensuring that no single controller becomes a bottleneck.

Implementing a hierarchical controller architecture can

further enhance performance. In such architectures, a global

controller oversees the network's overall operations while

regional controllers manage specific segments. This

hierarchical approach can reduce the load on individual

controllers and improve the scalability and fault tolerance of

the network.

Finally, real-time monitoring and adaptive control are

crucial for maintaining optimal controller placement.

Network conditions can change over time, and the initially

optimal placement may no longer be ideal. Continuous

monitoring allows for adjustments to be made dynamically,

ensuring that controller placement remains optimal as the

network evolves.

Evaluation of latency reduction techniques

To evaluate the effectiveness of these latency reduction

techniques, a series of simulations and real-world

deployments were conducted. The simulations utilized

network simulation tools like Mininet and OMNeT++, while

real-world tests were performed on a prototype SDN-based

WAN setup.

Real-World Deployments and Results

In addition to simulations, real-world tests were conducted

on a prototype SDN-based WAN setup. This prototype

network was designed to closely mimic the conditions and

challenges of a production environment, providing valuable

insights into the practical feasibility and effectiveness of the

proposed techniques. The prototype network consisted of

several key components, including SDN controllers

implemented using popular platforms such as Open

Daylight and ONOS, network devices configured to support

SDN protocols like Open Flow, edge nodes to test the

integration of edge computing, and monitoring tools for

real-time performance tracking. The evaluation results from

both simulations and real-world deployments provided a

comprehensive understanding of the effectiveness of the

latency reduction techniques. Intelligent traffic engineering

significantly reduced latency by optimizing data paths and

balancing network loads. The integration of edge computing

nodes in the prototype network reduced latency by

processing data closer to the source, effectively decreasing

the round-trip time for latency-sensitive applications.

Advanced routing algorithms, such as Dijkstra's algorithm

and Ant Colony Optimization (ACO), showed substantial

latency reductions compared to traditional routing protocols,

providing more efficient and adaptive routing paths. Data

plane optimizations, including the use of high-performance

switching hardware and efficient packet processing

techniques, resulted in lower latency. The implementation of

Network Function Virtualization (NFV) further enhanced

these benefits by offloading functions to virtualized

environments. Optimal controller placement had a

significant impact on network latency, reducing the time

taken for control messages to traverse the network and

improving overall performance. The evaluation of latency

reduction techniques through simulations and real-world

deployments demonstrated their effectiveness in improving

network performance in SDN-based WANs. Each technique

contributed to reducing latency, enhancing throughput, and

optimizing resource utilization. The combined use of these

techniques provides a comprehensive solution for

addressing latency challenges in modern networks, ensuring

they meet the demands of latency-sensitive applications and

services.

Conclusion

Reducing latency in SDN-based WANs is essential for

enhancing network performance and supporting the

demands of modern applications. The techniques discussed

in this article, including intelligent traffic engineering, edge

computing integration, advanced routing algorithms, data

plane optimization, and optimal controller placement, offer

significant potential for latency reduction. Future research

should focus on the development of more sophisticated

algorithms and the integration of emerging technologies to

further minimize latency in SDN-based WANs.

http://www.computersciencejournals.com/ijccn

International Journal of Circuit, Computing and Networking http://www.computersciencejournals.com/ijccn

~ 23 ~

References

1. Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE,

Azodolmolky S, Uhlig S. Software-Defined

Networking: A Comprehensive Survey. Proceedings of

the IEEE. 2015;103(1):14-76.

2. Akyildiz IF, Lee A, Wang P, Luo M, Chou W. A

Roadmap for Traffic Engineering in SDN-OpenFlow

Networks. Computer Networks. 2014;71:1-30.

3. Hu F, Hao Q, Bao K. A Survey on Software-Defined

Network and OpenFlow: From Concept to

Implementation. IEEE Communications Surveys &

Tutorials. 2014;16(4):2181-2206.

4. Satyanarayanan M. The Emergence of Edge

Computing. Computer. 2017;50(1):30-39.

5. Jian X, Dong L, Junde S. Optimal Controller Placement

in Software-Defined Networks. China

Communications. 2017;14(1):1-9.

http://www.computersciencejournals.com/ijccn

