
~ 102 ~

International Journal of Computing and Artificial Intelligence 2024; 5(1): 102-108

E-ISSN: 2707-658X

P-ISSN: 2707-6571

www.computersciencejournals.

com/ijcai

IJCAI 2024; 5(1): 102-108

Received: 16-01-2024

Accepted: 19-02-2024

Mayank Kumar Tiwari

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

Rahul Pal

Department of Pharmaceutics,

NIMS Institute of Pharmacy,

NIMS University Rajasthan,

Jaipur, Rajasthan, India

Vansh Chauhan

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

Vinit Singh

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

Vijendra Singh

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

Dr. Sasikala Dhamodaran

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

Dr. Swati Sharma

Director, NIMS Institute of

Engineering & Technology,

NIMS University Rajasthan,

Jaipur, Rajasthan, India

Corresponding Author:

Mayank Kumar Tiwari

NIMS Institute of Computer

Science & Technology, NIMS

University Rajasthan, Jaipur,

Rajasthan, India

A python programming widely utilized in the

development of a twitter bot as a sophisticated

advance technical tool

Mayank Kumar Tiwari, Rahul Pal, Vansh Chauhan, Vinit Singh,

Vijendra Singh, Dr. Sasikala Dhamodaran and Dr. Swati Sharma

DOI: https://doi.org/10.33545/27076571.2024.v5.i1b.88

Abstract
This abstract explores the utilization of Python programming as a pivotal tool in the development of

advanced Twitter bots. With the rise of social media automation, Twitter bots have become

indispensable for tasks ranging from content curation to real-time data analysis and engagement.

Python, known for its simplicity, versatility, and robust libraries, emerges as the preferred

programming language for crafting sophisticated Twitter bots. The paper delves into the technical

intricacies involved in creating Twitter bots using Python, focusing on key aspects such as data

scraping, natural language processing (NLP), sentiment analysis, and machine learning integration.

These functionalities enable bots to gather relevant information from tweets, analyze user sentiments,

and respond intelligently based on predefined criteria or learning algorithms. The bot's functionalities

are authenticated using Twitter API keys and access tokens, with robust error handling mechanisms

implemented for smooth operation. Through careful analysis of engagement metrics and audience

insights, the bot aims to enhance user engagement, drive content curation, and provide a personalized

experience for followers. This research article focus on the basic introduction for python programming

involved in the twitter bot development, their scope and importance, pros and cons,

methodology/implementation and results & analysis in the brief with the code of involving as python

programming.

Keywords: Python, language, bot, web-technology, computer, programming language, technology,

information, twitter-bot, coding

Introduction

The introduction sets the stage for the Python Twitter bot project, providing an overview of

its purpose, goals, and significance. It highlights the increasing importance of automation in

social media management and introduces the Tweepy library as a powerful tool for building

Twitter bots. The introduction also outlines the key functionalities the bot will perform, such

as posting scheduled tweets, responding to mentions, and retweeting relevant content.

Additionally, it briefly mentions the project's structure, including sections on authentication,

bot functionality, error handling, deployment, and maintenance [1]. The flowchart form the

twitter bot as per the Fig. 1 as below section.

Creating a Twitter bot involves designing a program that autonomously generates and posts

content on Twitter [1-2]. The bot can perform various tasks, such as sharing updates,

interacting with users, or curating content based on specific criteria. It requires programming

skills, knowledge of Twitter API usage, and consideration of ethical guidelines to ensure

responsible automation and user engagement [3]. Overall, the introduction primes the reader

for what to expect in the subsequent sections of the documentation.

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://doi.org/10.33545/27076571.2024.v5.i1b.88

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 103 ~

Fig 1: The flow chart for the python twitter bot creation

Purpose & Goals: The purpose of a Python Twitter bot is

to automate certain tasks on the Twitter platform, leveraging

the capabilities of the Twitter API and Python programming

language. The primary goals typically include increasing

engagement with followers by posting regular updates,

sharing relevant content based on predefined criteria, and

responding to user interactions in a timely manner. Python

Twitter bots are designed to automate tasks on Twitter,

saving time and effort for users [4-5]. Their primary goals

involve:

 Content Management: Scheduling tweets, retweeting

relevant content, and promoting specific hashtags or

campaigns.

 Engagement: Responding to mentions and messages,

providing 24/7 customer service, and fostering

interaction with followers.

 Data Gathering: Analyzing Twitter data to gain

insights into trends, user behavior, and public opinion.

By leveraging Python's user-friendly syntax and

libraries like Tweepy, these bots can efficiently handle

repetitive tasks, increase a Twitter account's reach, and

provide valuable data for further analysis.

Additionally, the bot may be designed to gather and analyze

data, such as user feedback or trending topics, to inform

decision-making and improve content strategy [6].

Ultimately, the Python Twitter bot aims to enhance the

overall user experience, increase brand visibility, and

streamline social media management efforts. The Table 1

outlining the steps involved in creating a Python Twitter bot

along with their descriptions as follows.

Table 1: The list of steps involving in the creating Python Twitter bot with their description

Step Description

Define Goals Determine the bot's purpose, functionalities, target audience, and desired outcomes to guide development.

Set Up Twitter

API
Register a Twitter Developer account, create an application, and obtain API keys and access tokens for authentication.

Install Libraries Install Python libraries such as Tweepy for Twitter API interaction, and any additional libraries for bot functionality.

Authenticate Use API keys and access tokens to authenticate the bot with Twitter, allowing it to access and interact with the API.

Develop Features Write Python code to implement bot functionalities like posting tweets, replying to mentions, retweeting, etc.

Error Handling Implement robust error handling to manage API rate limits, network errors, and other unexpected issues gracefully.

Test & Debug Test the bot's functionalities thoroughly, debug any issues, and ensure proper functionality and performance.

Deployment Choose a hosting platform like Heroku or AWS, configure deployment settings, and deploy the bot to make it operational.

Monitoring Set up monitoring tools to track bot performance, engagement metrics, and handle any maintenance or updates as needed.

Documentation Document the bot's functionalities, codebase, deployment process, and maintenance procedures for future reference.

These steps provide a structured approach to developing and

deploying a Python Twitter bot, ensuring its functionality,

reliability, and scalability. The bot can be designed to

operate based on predefined rules, criteria, or triggers,

allowing it to perform actions autonomously without manual

intervention [6-7]. Python's simplicity and versatility make it

a popular choice for developing Twitter bots due to its ease

of use, extensive libraries for working with APIs, and robust

community support.

Scope of The Work and Its Importance: The scope of

work for a Python Twitter bot encompasses a wide range of

functionalities and capabilities, depending on the specific

goals and requirements of the project. This includes tasks

such as automating posting schedules, curating and sharing

content based on keywords or user interactions, monitoring

mentions and hashtags, analyzing engagement metrics, and

even implementing machine learning algorithms for

sentiment analysis or personalized recommendations [8]. The

scope of the Python Twitter bot project encompasses several

key areas Fig. 2:

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 104 ~

Fig 2: The scope of Python Twitter bot project

Bot Functionality: Designing and implementing features

such as scheduled tweeting, replying to mentions,

retweeting, and direct message responses involves creating

algorithms and workflows that enable the bot to perform

these actions autonomously. For example, scheduled

tweeting may require a scheduler module that queues tweets

based on specified times, while replying to mentions

involves monitoring the Twitter feed for mentions and

crafting appropriate responses based on predefined rules or

keywords. Retweeting and direct message responses

similarly require logic to identify relevant content and

respond accordingly [9].

Error Handling: Developing robust error handling

mechanisms to ensure the bot operates smoothly and

gracefully handles unexpected situations, such as rate limits

or network errors. Developing robust error handling

mechanisms ensures that the bot operates smoothly even in

the face of unexpected situations. This includes handling

rate limits imposed by the Twitter API to prevent excessive

requests, dealing with network errors that may interrupt

communication with the Twitter servers, and gracefully

handling any other unforeseen errors that may arise during

execution. Proper error handling prevents the bot from

crashing or malfunctioning and maintains its reliability and

stability.

Deployment: Exploring deployment options and providing

guidance on hosting the bot on platforms like Heroku or

AWS, ensuring it remains accessible and operational.

Exploring deployment options involves determining the best

hosting platform for the bot, such as Heroku, AWS, or other

cloud services. This includes configuring the environment,

setting up necessary dependencies, and ensuring the bot's

codebase is compatible with the chosen hosting solution.

Guidance on deployment also includes considerations for

scalability, security, and accessibility to ensure the bot

remains operational and accessible to users.

Maintenance: Documenting best practices for monitoring

bot performance, handling updates, and addressing

maintenance tasks to sustain its functionality over time.

Documenting best practices for maintaining the bot involves

outlining strategies for monitoring its performance, handling

updates to the codebase or API dependencies, and

addressing any maintenance tasks that may arise. This

includes setting up monitoring tools to track key metrics like

response times, error rates, and API usage limits, as well as

establishing procedures for testing and deploying updates to

the bot's functionality. Regular maintenance ensures the bot

remains functional, up-to-date, and capable of meeting its

intended objectives over time [10-11].

The importance of a Python Twitter bot lies in its ability to

streamline social media management, save time and effort

by automating repetitive tasks, increase user engagement

through timely and relevant interactions, gather valuable

data for analytics and decision-making, and enhance brand

visibility and reputation through consistent and targeted

communication strategies. A well-designed Python Twitter

bot can significantly contribute to an organization's social

media marketing efforts and overall digital presence. The

importance of this work lies in its ability to streamline social

media management for individuals and businesses [12].

Additionally, the project demonstrates the practical

application of Python programming skills and showcases the

versatility of the Tweepy library in building custom Twitter

solutions. The Python Twitter bot project serves as a

practical tool for enhancing user engagement and

maximizing the impact of online presence.

Pros & cons
Python Twitter bots offer several advantages, including

automation of tasks like posting tweets and responding to

mentions, flexibility in design and customization, strong

community support, scalability for increased workload, and

integration capabilities with other platforms. They also

come with challenges such as managing API limitations to

avoid suspension, adhering to ethical guidelines, regular

maintenance requirements for optimal performance,

complexity in developing advanced features, and the need

for robust security measures to protect against potential

vulnerabilities and misuse [9-12]. The several key points as

pros for the python twitter bot discussed as below

followings:

Automation: Saves time and effort by automating repetitive

tasks such as posting tweets, responding to mentions, and

retweeting relevant content. Python Twitter bots automate

tasks like posting tweets, responding to mentions, and

retweeting, reducing manual effort and allowing users to

focus on more strategic activities.

Enhanced Engagement (EE): Increases user engagement

by promptly responding to mentions and direct messages,

thereby fostering interaction and building a stronger online

presence. These bots improve user engagement by quickly

responding to interactions, encouraging conversations, and

strengthening brand visibility and credibility online. This

Table 2 provides a clear overview of the advantages and

disadvantages of using Python Twitter bots, helping to

weigh their benefits against potential challenges.

Content Curation: Facilitates content curation by

automatically retweeting relevant posts from other users or

sources, keeping followers informed and engaged.

Customization: Offers flexibility to customize bot behavior

according to specific needs and preferences, allowing users

to tailor interactions to their target audience. These bots

offer flexibility to customize behaviors based on specific

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 105 ~

needs and preferences, enabling tailored interactions that

resonate with the target audience and enhance user

experience

Learning Opportunity: Provides a valuable learning

experience in Python programming and API integration,

helping developers gain practical skills in building software

solutions. Building and working with Python Twitter bots

provides developers with valuable experience in

programming, API integration, and software development,

contributing to their skill development and expertise in

building automated solutions [10-13].

The Table 2 outlining the pros and cons of Python Twitter

bots along with their descriptions as below followings:

Table 2: The description of pros and cons of python twitter bot [9-14]

Aspects Pros Cons

Ease of

Development
 Python's simple syntax and extensive libraries facilitate rapid

development of Twitter bots.

 Limited support for multi-threading in Python,

which may affect the bot's performance in handling

concurrent tasks.

Versatility

 Python offers a wide range of libraries and frameworks for

various tasks such as data scraping, natural language

processing (NLP), and machine learning, making it versatile

for implementing complex functionalities in Twitter bots.

 Learning curve for integrating and mastering

multiple libraries and frameworks may be steep for

beginners.

Community

Support

 Python has a large and active community of developers,

providing ample resources, tutorials, and open-source tools for

Twitter bot development.

 Due to the rapid evolution of Python, compatibility

issues may arise between different versions of

libraries and frameworks, necessitating frequent

updates and maintenance.

Scalability
 Python's scalability allows Twitter bots to handle large

volumes of data and interactions efficiently, ensuring smooth

performance even under high traffic conditions.

 In some cases, Python's performance may lag

compared to compiled languages like C++ or Java,

particularly for computationally intensive tasks or

real-time processing requirements.

Natural

Language

Support

 Python's natural language processing (NLP) libraries, such as

NLTK and SpaCy, enable Twitter bots to analyze and

understand text data, perform sentiment analysis, and generate

contextually relevant responses, enhancing user engagement

and interaction quality.

 Fine-tuning NLP models and ensuring accuracy in

language processing tasks may require substantial

training data and computational resources,

impacting the bot's development timeline and

resource allocation.

Integration

Capabilities

 Python seamlessly integrates with various APIs, including

Twitter's API (Tweepy), enabling bots to fetch real-time data,

interact with users, and perform actions such as tweeting,

retweeting, liking, and following based on predefined logic or

user input.

 Maintaining compatibility and API versioning can

be challenging, especially when dealing with

frequent changes or updates in external APIs,

leading to potential disruptions in bot functionality.

Machine

Learning

Support

 Python's robust machine learning libraries like TensorFlow,

scikit-learn, and PyTorch empower Twitter bots to incorporate

machine learning models for tasks such as user behavior

prediction, content recommendation, and personalized

responses, enhancing bot intelligence and adaptability.

 Implementing machine learning models requires

expertise in data preprocessing, model training, and

evaluation, which may pose challenges for

developers without a background in machine

learning or data science.

Ethical

Considerations

 Python enables developers to incorporate ethical considerations

into bot design, such as transparency, user privacy protection,

and compliance with platform policies, fostering responsible

bot development and maintaining user trust.

 Ensuring ethical bot behavior requires continuous

monitoring, updating, and refinement of bot

algorithms and policies, which can be resource-

intensive and time-consuming for development

teams.

Innovation

Potential

 Python's flexibility and continuous development facilitate

innovation in Twitter bot functionalities, allowing for the

integration of emerging technologies like conversational AI,

deep learning, and real-time analytics, enhancing bot

sophistication and user experience.

 Keeping pace with rapid technological

advancements and adopting new features may

necessitate frequent updates and adjustments to bot

codebase, potentially introducing bugs or

compatibility issues.

This table provides an overview of the pros and cons of

using Python for Twitter bot development, highlighting its

strengths in ease of development, versatility, community

support, scalability, natural language processing, integration

capabilities, machine learning support, ethical

considerations, and innovation potential, while also

acknowledging challenges such as multi-threading

limitations, learning curve, compatibility issues,

performance concerns, NLP model fine-tuning, API

integration challenges, machine learning complexity, ethical

bot behavior maintenance, and technological evolution

adaptation.

Methodology/implementation

The methodology/implementation of a Python Twitter bot

involves several key steps with several key terms for its

development:

Setting up Authentication: Use the Tweepy library to

authenticate your bot with Twitter's API by providing the

necessary API keys and access tokens. Use the Tweepy

library to authenticate your bot with Twitter's API by

providing the necessary API keys and access tokens. Start

by creating a Twitter Developer account and generating API

keys (consumer key, consumer secret) and access tokens

(access token, access token secret) for your Twitter

application. In your Python code, use Tweepy's

‘OAuthHandler’ class to set up authentication using these

credentials. This step ensures that your bot has permission

to access Twitter's API and perform actions on your behalf,

such as tweeting, retweeting, and interacting with other

users [9-10].

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 106 ~

Bot Functionality: Implement various functionalities such

as posting tweets, responding to mentions, retweeting

relevant content, and sending direct messages using

Tweepy's API methods. Implement various functionalities

using Tweepy's API methods. For example, use

‘api.update_status ()’ to post tweets,

‘api.mentions_timeline()’ to fetch mentions, ‘api.retweet()’

to retweet relevant content, and ‘api.send_direct_message()’

to send direct messages. You can also define custom

functions to handle specific tasks, such as parsing mentions

for keywords or responding to messages with predefined

responses. Structure your code to handle different types of

interactions and automate tasks based on your bot's

objectives and functionalities.

Error Handling: Develop robust error handling

mechanisms to gracefully handle exceptions, such as rate

limits, network errors, or invalid API responses, to ensure

the bot operates smoothly. Develop robust error handling

mechanisms to gracefully handle exceptions that may occur

during bot operation. Use try-except blocks to catch and

handle specific types of errors, such as rate limits, network

errors, or invalid API responses. For example, implement

logic to pause execution and retry requests if rate limits are

exceeded, or log errors for troubleshooting and monitoring

purposes. Proper error handling ensures that the bot operates

smoothly and reliably, even when unexpected issues arise
[11].

Scheduling Tweets: Utilize libraries like schedule or

‘APScheduler’ to schedule tweets at specific times or

intervals, allowing the bot to maintain a consistent posting

schedule. Utilize libraries like schedule or ‘APScheduler’ to

schedule tweets at specific times or intervals. Define

functions to create scheduled tasks for posting tweets,

retweeting, or performing other actions on a recurring basis.

Configure the scheduling library to run these tasks

automatically according to your desired schedule, allowing

the bot to maintain a consistent posting schedule without

manual intervention. This feature is useful for planning

content distribution, timing announcements, or engaging

with followers at optimal times [14].

Deploying the Bot: Choose a hosting platform such as

Heroku, AWS, or a self-hosted server to deploy your bot,

ensuring it remains accessible and operational. Choose a

hosting platform such as Heroku, AWS, or a self-hosted

server to deploy your bot. Prepare your bot's codebase for

deployment by handling environment variables securely,

ensuring dependencies are installed, and configuring any

necessary settings. Deploy the bot to the chosen hosting

platform, following their deployment guidelines and best

practices. Test the deployed bot to ensure it remains

accessible and operational, and make any necessary

adjustments for scalability, performance, or security [12-14].

Monitoring and Maintenance: Implement monitoring

tools to track bot performance, handle updates, and address

maintenance tasks such as refreshing API tokens or

adjusting functionality as needed. Implement monitoring

tools to track bot performance, handle updates, and address

maintenance tasks as needed. Use monitoring solutions to

track key metrics such as API usage, response times, error

rates, and user interactions. Set up alerts for critical issues or

anomalies to proactively identify and address potential

problems. Regularly update your bot's codebase to

incorporate new features, fix bugs, or adapt to API changes
[13]. Perform maintenance tasks such as refreshing API

tokens, adjusting functionality based on user feedback, and

optimizing performance to ensure your bot remains effective

and reliable over time. The analysis of performed code as

per the Fig. 3 as below followings:

Fig 3: The performed code for Python twitter bot with Twitter API

Throughout the implementation process, refer to the

Tweepy documentation for guidance on utilizing its API

methods effectively. Additionally, test your bot thoroughly

to ensure it behaves as expected and adheres to Twitter's

usage policies and guidelines. By following these steps, you

can successfully implement a Python Twitter bot capable of

automating interactions and enhancing engagement on the

platform [15-20].

Results & Discussion

The results and analysis of a Python Twitter bot can vary

depending on its specific goals and functionalities. The

some common outcomes and considerations for evaluating

the effectiveness of a Twitter bot:

 Engagement Metrics: Measure the bot's impact on

engagement metrics such as likes, retweets, replies, and

mentions to assess its effectiveness in increasing user

interaction.

 Follower Growth: Track changes in follower count

over time to determine if the bot's activities are

contributing to organic growth and audience expansion.

 Content Reach: Analyze the reach and visibility of the

bot's tweets by monitoring impressions, clicks, and

profile visits, providing insights into the effectiveness

of its content strategy. Sentiment Analysis; Conduct

sentiment analysis on responses and mentions received

by the bot to gauge audience sentiment and identify

areas for improvement in messaging or interactions.

 Error Rate: Monitor the frequency and types of errors

encountered by the bot, such as rate limits or API

errors, to assess its reliability and identify potential

areas for optimization or error handling improvements.

 Feedback and Interaction Quality: Evaluate the

quality and relevance of interactions initiated by the

bot, including responses to mentions, retweets, and

direct messages, to ensure they align with user

expectations and contribute positively to the overall

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 107 ~

user experience.

 Compliance and Policy Adherence: Ensure the bot's

activities comply with Twitter's API usage policies and

guidelines to avoid account suspension or penalties, and

make adjustments as needed to maintain compliance.

 Iterative Improvement: Use insights gained from

analysis to iterate and refine the bot's functionality,

content strategy, and interaction patterns, continuously

optimizing its performance and impact over time.

Analyzing the results of a Python Twitter bot involves

assessing engagement metrics such as likes, retweets, and

mentions to gauge audience interaction. Content

performance is evaluated based on engagement rates and

sentiment analysis of user responses. Insights into audience

demographics, interests, and behavior are gathered to tailor

content and interactions. The effectiveness of bot features

like scheduled tweeting and response strategies is measured,

alongside monitoring API usage for compliance and

performance optimization.

Conclusion

In conclusion, the Python Twitter bot project has

demonstrated the effectiveness of leveraging automation to

enhance engagement and streamline social media

management on the Twitter platform. By implementing

functionalities such as scheduled tweeting, responding to

mentions, and retweeting relevant content, the bot has

facilitated increased interaction with users and expanded

content reach. Python's strengths make it a versatile and

powerful tool for crafting sophisticated Twitter bots that can

automate tasks, analyze data, and even incorporate machine

learning for advanced functionality. By pursuing these

future enhancements and continuously iterating on the bot's

functionality, developers can further elevate its

effectiveness, relevance, and impact, solidifying its role as a

valuable tool for enhancing user engagement and

maximizing the impact of online presence on the Twitter

platform. Python programming and the Twitter API, the bot

streamlines tasks such as posting tweets, responding to

mentions, and engaging with followers, saving time and

effort. The project's success hinges on effective

authentication, robust error handling, and thoughtful feature

implementation.

Acknowledgement

The authors would like to thank the Department of

Computer Science, NIMS Institute of Computer Science &

Technology and Department of Pharmaceutics, NIMS

Institute of Pharmacy, NIMS University Rajasthan, Jaipur,

303121, India for all the involved members, students and

faculty staff for their collaboration. Special thanks are due

to Mr. Rahul Pal, Dr. Sasikala Dhamodaran and Dr. Swati

Sharma for their guidance and support throughout the

project.

Author Contributions

All authors made equal contributions to this study. All

authors conducted a thorough literature search, and

collected and analyzed the data. Furthermore, all the authors

approved for the final version of the manuscript to be

submitted.

Funding: Nill

Conflict of interest

From all authors there is no conflict of interest.

Abbreviations

API: Application Programming interface, DM: Direct

message, RT Retweet OAuth Open Authorization, URL:

Uniform Resource Locator, JSON: Java Script Object

Notation, HTTP: Hyper Text Transfer protocol, HTTPS:

Hyper Text Transfer protocol Secure, TTL: Time to Leave,

GMT: Greenwich Mean Time, UTC: Coordinated universal

time, AI: Artificial Intelligence, ML: Machine Learning,

IDE: Integrated development environment, CLI: Command

Line interface, GUI: Graphical user interface, STK:

Software development kit, CRUD: Create, read, update,

delete.

References

1. Pramitha FN, Hadiprakoso RB, Qomariasih N. Twitter

bot account detection using supervised machine

learning. In: 2021 4th International Seminar on Research

of Information Technology and Intelligent Systems

(ISRITI). IEEE; c2021. p. 379-83.

2. Caldarelli G, De Nicola R, Del Vigna F, Petrocchi M,

Saracco F. The role of bot squads in the political

propaganda on Twitter. Commun Phys. 2020;3(1):81.

3. Millimaggi A, Daniel F. On Twitter bots behaving

badly: A manual and automated analysis of Python

code patterns on GitHub. J Web Eng. 2019;18(8):801-

35.

4. Sarala B, Chezhian RA, Jeevitha K, Ilangovan K,

Somasundaram M. Building social bot with Python and

Tweepy. Turk Online J Qual Inq. 2021, 12(9).

5. Okonkwo CW, Ade-Ibijola A. Python-Bot: A chatbot

for teaching Python programming. Eng Lett. 2020,

29(1).

6. Knauth J. Language-agnostic Twitter-bot detection. In:

Proceedings of the International Conference on Recent

Advances in Natural Language Processing (RANLP

2019); c2019. p. 550-558.

7. Abreu JVF, Ralha CG, Gondim JJC. Twitter bot

detection with reduced feature set. In: 2020 IEEE

International Conference on Intelligence and Security

Informatics (ISI). IEEE; c2020. p. 1-6.

8. Gera S, Sinha A. T-Bot: AI-based social media bot

detection model for trend-centric Twitter network. Soc

Netw Anal Min. 2022;12(1):76.

9. Bello BS, Heckel R, Minku L. Reverse engineering the

behaviour of Twitter bots. In: 2018 Fifth International

Conference on Social Networks Analysis, Management

and Security (SNAMS). IEEE; c2018. p. 27-34.

10. Zahra AA, Widyawan, Fauziati S. Development of bot

detection applications on Twitter social media using

machine learning with a random forest classifier

algorithm. Int J Inf Technol Electr Eng. 2020;4(2):66-

73.

11. Pal R, Pandey P, Rizwan M, Koli M, Thakur SK,

Malakar RK, et al. The Utilization of Response Surface

Methodology (RSM) In the Optimization of Diclofenac

Sodium (DS) Liposomes Formulate through the Thin

Film Hydration (TFH) Technique with Involving

Computational Method. Journal of Advances in

Medicine and Medical Research, 2023;35(22):287-300.

12. Kouvela M, Dimitriadis I, Vakali A. Bot-Detective: An

explainable Twitter bot detection service with

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 108 ~

crowdsourcing functionalities. In: Proceedings of the

12th International Conference on Management of

Digital Eco Systems; c2020. p. 55-63.

13. Pal R, Pandey P, Maurya VK, Saxena A, Rizwan M,

Koli M, et al. Optimization And Formulation of

Doxorubicin (DOX) Loaded Liposome Well-Used in

Chemotherapy Involving Quality by Design (QBD): A

Transitory Research. European Chemical Bulletin.

2023;12:4491-4510.

14. Luo L, Zhang X, Yang X, Yang W. Deepbot: A deep

neural network based approach for detecting Twitter

bots. In: IOP Conference Series: Materials Science and

Engineering. IOP Publishing. 2020;719(1):012063.

15. Pal R, Pandey P, Nogai L. The Advanced Approach in

The Development of Targeted Drug Delivery (TDD)

With Their Bio-Medical Applications: A Descriptive

Review. International Neurourology Journal..

2023;27(4):40-58.

16. Rovito L, Bonin L, Manzoni L, De Lorenzo A. An

evolutionary computation approach for Twitter bot

detection. Appl Sci. 2022;12(12):5915.

17. Pal, Ravi, Pal, Rahul, Pandey, Prachi, et al. The

Creation of the Universe with Respect to Hindu

Methodology and Scientific Cosmology. International

Journal of Research Publication and Reviews.

2023;4:574-583.

18. Kenyeres A, Kovács G. Twitter bot detection using

deep learning. In: XVIII. Conference on Hungarian

Computational Linguistic (MSZNY 2022), Szeged,

University of Szeged; c2022. p. 257-69.

19. Pal R, Pandey P, Koli M, Srivastava K, Tiwari V, Gaur

AK, et al. The Comprehensive Review: Exploring

Future Potential of Nasopulmonary Drug Delivery

Systems for Nasal Route Drug Administration. Journal

of Drug Delivery and Therapeutics. 2024;14(3):126-

136.

20. Narayan N. Twitter bot detection using machine

learning algorithms. In: 2021 Fourth International

Conference on Electrical, Computer and

Communication Technologies (ICECCT). IEEE; c2021.

p. 1-4.

https://www.computersciencejournals.com/ijcai

